Closing Tues: 14.3(2), 14.4

Closing Thurs: 14.7(1)

Office Hours: 12:30-2:00pm, MSC

b) An object's motion (x,y) = (x(t),y(t)) satisfies $y = x^2$ for all times.

14.3/14.4 Partial Der. & Tangent Planes

Note: A variable can be treated as

- 1. A constant (constant term or coef)
- 2. An independent variable (input)
- 3. A dependent variable (output)

$$\frac{\dot{d}}{dt} =$$

c)
$$z = x^2 + y^3 e^{6y} - 5xy^4 + \ln(w)$$

$$\frac{\partial z}{\partial x} =$$

$$\frac{\partial z}{\partial x} =$$

$$\frac{\partial z}{\partial w} =$$

Entry Task: Find the derivatives

a)
$$y = f(x) = x^2 e^x$$

$$\frac{dy}{dx} =$$

d)
$$x^2 + y^3 = 1$$
, $\frac{dy}{dx} = ??$

e)
$$x^2 + t^3 + y^2 - z^2 = 1$$
, $\frac{\partial z}{\partial x} = ?$?

Graphical Interpretation of Partial Der: 2. Assume you are standing on the Pretend you are skiing on the surface $z = f(x, y) = 15 - x^2 - y^2$.

Exercise:

1. Find $f_x(x, y)$ and $f_y(x, y)$

- point on the surface corresponding to (x,y) = (7,4). Compute:
 - f(7,4) =
 - ii) $f_x(7,4) =$
 - iii) $f_{v}(7,4) =$

What do these three numbers represent?

The plane y = 4 intersecting the surface $z = 15 - x^2 - y^2$.

The plane x = 7 intersecting the surface $z = 15 - x^2 - y^2$.

Second Partial Derivatives

Concavity in *x*-direction:

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = f_{xx}(x, y)$$

Concavity in *y*-direction:

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = f_{yy}(x, y)$$

Mixed Partials:

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = f_{xy}(x, y)$$
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = f_{yx}(x, y)$$

Example: Find all second partials for $z = f(x, y) = x^4 + 3x^2y^3 + y^5$

14.4 Tangent Planes (linear approx.)

The <u>tangent plane</u> to a surface at a point is the plane that contains all tangent lines at that point. It is given by:

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Example: Find the tangent plane to

$$z = f(x,y) = 15 - x^2 - y^2$$
 at (7,4)

Recall:

$$f(7,4) =$$

$$f_{x}(7,4) =$$

$$f_{y}(7,4) =$$

Derivation of Tangent Plane

The plane goes thru (7, 4, -50). Now we need a normal vector.

Note:

$$f_{x}(x,y) = -2x$$

$$f_{\scriptscriptstyle X}(7,4) = -14$$

$$f_y(x,y) = -2y$$

 $f_y(7,4) = -8$

Thus, we can get two vectors that are parallel to the plane:

$$<1,0,f_x(x_0,y_0)> = <1,0,-14>$$

 $<0,1,f_v(x_0,y_0)> = <0,1,-8>$

So a normal vector is given by <1,0,-14 > x <0,1,-8> = < 14, 8, 1 >

Tangent Plane:

$$14(x-7) + 8(y-4) + (z+50) = 0$$

Which we rewrite as:

$$z + 50 = -14(x-7) - 8(y-4)$$

General Derivation

In general, for z = f(x,y) at (x_0, y_0) by:

- 1. $z_0 = f(x_0, y_0) = height$.
- 2. $\langle 1,0,f_x(x_0,y_0)\rangle$ = 'a tangent in x-dir.' $\langle 0,1,f_y(x_0,y_0)\rangle$ = 'a tangent in y-dir.'
- 3. Normal to surface:

$$\langle 1,0, f_x(x_0, y_0) \rangle \times \langle 0,1, f_y(x_0, y_0) \rangle$$

= $\langle -f_x(x_0, y_0), -f_y(x_0, y_0), 1 \rangle$

Tangent Plane:

$$-f_x(x_0, y_0)(x - x_0) - f_y(x_0, y_0)(y - y_0) + (z - z_0) = 0$$
 which we typically write as:

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Example: Find the tangent plane for $f(x,y) = x^2 + 3y^2x - y^3$ at (x,y) = (2,1).

An Application of the Tangent Planes

Linear Approximation

"Near" the point (x_0,y_0) the tangent plane and surface z-values are close.

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0),$$
 which is the same as
$$L(x, y) = z = z_0 + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Idea:

$$f(x,y) \approx L(x,y)$$
 for $(x,y) \approx (x_0,y_0)$

Example:

Use the linear approximation to $f(x,y) = x^2 + 3y^2x - y^3$ at (x,y) = (2,1) to estimate the value of f(1.9, 1.05).